
Structural Information Flow: A Fresh Look at Types for
Non-interference
HEMANT GOUNI, Carnegie Mellon University, USA

FRANK PFENNING, Carnegie Mellon University, USA

JONATHAN ALDRICH, Carnegie Mellon University, USA

Information flow control is a long-studied approach for establishing non-interference properties of programs.

For instance, it can be used to prove that a secret does not interfere with some computation, thereby establishing

that the former does not leak through the latter. Despite their potential as a holy grail for security reasoning

and their maturity within the literature, information flow type systems have seen limited adoption. In practice,

information flow specifications tend to be excessively complex and can easily spiral out of control even

for simple programs. Additionally, while non-interference is well-behaved in an idealized setting where

information leakage never occurs, most practical programs must violate non-interference in order to fulfill

their purpose. Useful information flow type systems in prior work must therefore contend with a definition of

non-interference extended with declassification, which often offers weaker modular reasoning properties.

We introduce structural information flow, which both illuminates and addresses these issues from a logical

viewpoint. In particular, we draw on established insights from the modal logic literature to argue that

information flow reasoning arises from hybrid logic, rather than conventional modal logic as previously

imagined.We showwith a range of examples that structural information flow specifications are straightforward

to write and easy to visually parse. Uniquely in the structural setting, we demonstrate that declassification

emerges not as an aberration to non-interference, but as a natural and unavoidable consequence of sufficiently

general machinery for information flow. This flavor of declassification features excellent local reasoning and

enables our approach to account for real-world information flow needs without compromising its theoretical

elegance. Finally, we establish non-interference via a logical relations approach, showing off its simplicity in

the face of the expressive power captured.

CCS Concepts: • Security and privacy→ Information flow control; • Theory of computation→ Modal
and temporal logics; Proof theory; • Software and its engineering→ Polymorphism.

Additional Key Words and Phrases: information flow, security types, confidentiality, polarity, fine-grained,

coarse-grained, dependency tracking, modal logic, polymorphism, declassification, existential quantification

ACM Reference Format:
Hemant Gouni, Frank Pfenning, and Jonathan Aldrich. 2025. Structural Information Flow: A Fresh Look at

Types for Non-interference. Proc. ACM Program. Lang. 9, OOPSLA2, Article 414 (October 2025), 27 pages.

https://doi.org/10.1145/3764116

1 Introduction
Information flow control has long captured the interest of security researchers everywhere for

its unique ability to establish non-interference [Goguen and Meseguer 1982], a powerful property

which states that programs satisfying it cannot be manipulated to reveal sensitive information

to untrusted parties. For instance, an e-mail notification system should never disclose password

Authors’ Contact Information: Hemant Gouni, Carnegie Mellon University, Pittsburgh, USA, hsgouni@cs.cmu.edu; Frank

Pfenning, Carnegie Mellon University, Pittsburgh, USA, fp@cs.cmu.edu; Jonathan Aldrich, Carnegie Mellon University,

Pittsburgh, USA, jonathan.aldrich@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART414

https://doi.org/10.1145/3764116

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

https://orcid.org/0009-0009-3888-8440
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0003-0631-5591
https://doi.org/10.1145/3764116
https://orcid.org/0009-0009-3888-8440
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0002-8279-5817
https://orcid.org/0000-0003-0631-5591
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3764116
https://www.acm.org/publications/policies/artifact-review-and-badging-current

414:2 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

data, so password processing should not interfere with the execution of the former. Types are

the dominant mechanism for enforcing non-interference owing to its status as a hyperproperty
[McLean 1996]—a question about a program that can only be answered by comparing multiple
traces of its evaluation. Due to their innate ability to reason simultaneously over all possible

program executions, type systems might be expected to offer a straightforward path to discharging

non-interference invariants.

However, even in the face of their potential to stem the avalanche of security compromises faced

by the computer industry, existing information flow systems have seen limited adoption. Current

approaches to information flow reasoning burden programmers with complex specifications and

inadequately modular mechanics. In this paper, we argue that the reasons for these deficiencies

can be both explained and remedied with time-tested intuitions from the literature on modal logic,

within which information flow has previously been couched [Miyamoto and Igarashi 2004]. The

system crafted from this process, which we call structural information flow, is simpler and easier to

use both for metatheory and for program reasoning despite being expressive enough to support

practical programs. We start this paper with a brief introduction to information flow, requiring

only some familiarity with statically typed functional programming as a prerequisite.

1.1 An Opinionated Crash Course in Information Flow
Programmers often express information flow properties—without any access to purpose-built

systems for doing so—by leveraging parametric polymorphism [Reynolds 1984].
1
A simple example

is the polymorphic identity function. The typing id : 𝛼 -> 𝛼 specifies that the return value must

depend only on the data given as input. Likewise, the typing second : 𝛼 -> 𝛽 -> 𝛽 expresses that

its return value must depend only on its second argument. For a more interesting example, consider

the typing of the standard map function on lists given here. The polymorphic components are the

let map : (𝛼 -> 𝛽) -> list 𝛼 -> list 𝛽

list elements, so this type communicates that the elements of the input list are permitted to flow

into the higher-order argument, and that the elements of the output list depend on the return

value of that argument. All three of these types express information flow properties: for a given

computation, they relate its inputs to its outputs. However, these types also express data abstraction
properties: id : 𝛼 -> 𝛼 expresses that the function should be able to be given an input at any type

and return data at that same type. Both properties are consequences of parametricity, which states

that not only does the argument flow to the return value, but that exactly the argument is returned.

Parametricity is quite useful, but its sheer strength greatly limits the range of programs we can

write under it. What if we want to continue tracking information flow, but do not want to keep data

abstract? For instance, we might like to write a function that takes as argument an integer, adds

one to it, and returns it. We cannot, however, add one to data at type 𝛼 because it is not known

to be a number. Our first core intuition is that parametric polymorphism offers two distinct
features, both (1) providing data abstraction and (2) enforcing information flow properties.
We want to isolate the second, so let us try tagging types with dependency variables like 𝛼 , rather
than having 𝛼 be the type. Under this proposal, we might type the successor function on integers

as 𝛼 int -> 𝛼 int. The 𝛼 no longer has any role in data abstraction, but merely tracks the identity
of the data—that is, on which data it depends. Note that this is distinct from the 𝛼 in list 𝛼 , which
permits the list to be generic over the type of its contents.

We are better off now than we were before—we can do interesting computation with data whose

information flow content is being tracked—but are not quite there yet. For instance, try to write

1
As distinguished from ad hoc polymorphism; the distinction is detailed in Strachey [2000].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:3

down the information flow type of the addition function. We would like to be able to state that it

takes two integers as arguments and returns an integer dependent on both. We can start out by

writing add : 𝛼 int -> 𝛽 int -> ? . What should go in the ? ? Our current syntax is constrained

to mention a single dependency per type, so we seem to be stuck. We can fix this by generalizing

our type-level dependency variables to being sets of dependency variables. This is the other core
intuition behind our system. We set ? = [𝛼 𝛽] int, which can be read as “this int depends on
data from sources 𝛼 and 𝛽 .” The resulting typing for addition is shown by add. The dependency

let add : [𝛼] int -> [𝛽] int -> [𝛼 𝛽] int

variables on the arguments have also been turned into dependency sets for consistency. Keep in

mind that these type signatures are polymorphic: now that we have generalized beyond single

variables to sets of variables within our types, each variable in the set can be instantiated to another

set of variables. Just as the 𝛼 in 𝛼 -> 𝛼 can be instantiated to int to obtain int -> int, the 𝛼 in add
can be instantiated to [secret1 secret2], representing data depending on some secrets. add1
shows the resulting typing, taking as a first argument an an integer dependent on concrete sources

secret1 and secret2. It returns an integer dependent on secret1, secret2, and 𝛽 .

let add1 : [secret1 secret2] int -> [𝛽] int -> [secret1 secret2 𝛽] int

We haven’t yet performed any meaningful information flow reasoning—what might a specifica-

tion for preventing secret leakage look like in this setting? We consider below a simple password

checker. We start by declaring some password data pass, which is a string tagged with pwd to
indicate it contains password data. We assume pwd is in scope but defer detailing the mechanisms

used to introduce it. Our checking function check takes a string—a password attempt—at any

dependencies and returns a bool tagged with those dependencies and pwd, indicating whether the

attempt was correct. This all seems to be as expected: the return value of check is dependent on

let pass : [pwd] string = "katya"
let check : [𝛼] string -> [𝛼 pwd] bool = fun attempt -> attempt == pass

both its argument and pass, being the result of comparing them, so the type of the return value

states exactly the same. If our purpose is to usefully detect whether password data is at risk of

leaking, though, this seems too conservative: it is necessary to the function of the password checker

that its boolean return value is permitted to leak.

Of course, it is intuitively a violation of non-interference to leak an arbitrary bool dependent on

password data: consider the case where a function of the same type as check returns the 𝑛th bit

of the password as a boolean value, where 𝑛 is the length of the argument string. Unexpectedly,

we will be able to give check—that is, this and only this implementation of check—the type

[𝛼] string -> [𝛼] bool. Section 4 will reveal precisely how. For a final example, consider the

function f. What must ? be?

let f : [𝛼] bool -> [] bool = ?

The punchline of this paper, to be delivered in full in Section 5, will be that f must be constant

in its argument. This is due to recovering non-interference as a flavor of parametricity over

dependency variables. In fact, any function where the input dependency set is not a subset of

the output must be the constant function. And with that, we conclude our introduction: the basic

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:4 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

notions we have introduced are all that will be needed for the structural information flow setting.

The rest of this paper will elucidate the seemingly straightforward choices we have just made,

grounding and justifying them via well-understood logical foundations and showing that the system

created by these choices is expressive enough to capture information flow issues arising in the

wild. In particular, the aforementioned desirable typing of check will turn out not to require any

extensions. This is not the case with other approaches, which call this behavior declassification and

add constructs to allow violations of non-interference. This often obstructs modular reasoning.

1.2 A Preview of the Rest
Section 2 will reveal that the language we have set up is a variant of hybrid logic. We have just

discussed how to arrive at this language from parametric polymorphism, but it is also possible

to find the way there by drawing on logical intuitions. We describe how to arrive at our setting

beginning from prior work grounding information flow in conventional modal logic. Section 3

explores a number of further examples, touching on several subtle details of our system that

significantly aid the straightforward and succint nature of our information flow specifications. This

is detailed by comparing to equivalent programs written in systems without our insights. Section 4

introduces declassification by example, solving our issue with check above. Section 5 discusses

the typing rules, comparing to those for hybrid logic and discussing the simple logical relations

argument with which non-interference can be validated in our setting. Section 6 compares to other

work investigating either declassification or the foundations of information flow. We conclude in

Section 7. Our contributions are the following:

(1) We clarify and re-cast the foundations of information flow in the light of hybrid logic
[Prior 1968], a well-studied generalization of modal logic designed around concerns we will

show throughout this paper to be fundamental to information flow reasoning.

(2) We show that the design intuition imparted by hybrid logic has the potential to simplify
information flow specifications. We extoll the virtues of performing information flow

reasoning in terms of dependency sets, inspired by hybrid logic’s world paths. We touch on

the important role played by the proof-theoretic concept of polarity in determining the

granularity of dependency tracking.

(3) Remarkably, the quantification machinery suggested by hybrid logic realizes declassifica-
tion fully internally to the system. That is, our theory neither makes any explicit mention

of declassification nor needs to be extended to support it. We remark on the nature of this as

computationally relevant information flow policies.
(4) Our metatheory and proof of non-interference inherit the elegance and simplicity of the

programmer-facing side of our system. Namely, we show how our logical relation inherently

supports non-interference reasoning in the presence of declassification, automatically

ignoring disequalities resulting from declassification by writ of quantification.

By the end of this paper, we will have taken the initial steps towards bringing to bear the full-

throated no-concessions-made variant of non-interference as a practical—even desirable—regime

under which to write secure programs.

2 Background, Logic, and Typing
Having introduced one way of arriving at the structural approach to information flow starting from

ordinary functional programming, we will now reveal another starting from constructive modal

logic. It will turn out that hybrid logic [Prior 1968], a generalization of modal logic, provides a more

robust foundation for information flow reasoning than the standard modal setting in which most

prior work has been cast. In particular, we will show that hybrid logic has been designed around a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:5

number of considerations critical to information flow reasoning. We start by reviewing programs

written under a more standard theory of information flow, then elaborate its logical structure in

the subsections that follow.

2.1 Introduction: Round Two
Let us revisit the examples from the introduction within a conventional theory of information flow

in order to build intuition. In particular, our examples are lightly inspired by the syntax of Flow

Caml [Pottier and Simonet 2002], an information flow system for OCaml. Figure 1 compares the

typing of the identity function on integers between our approach and a standard one.

let id : [𝛼] int -> [𝛼] int (* Ours *)
let id' : 𝛼 int -> 𝛼 int (* Theirs *)

Fig. 1. Similar-looking types...

They look pretty similar. In fact, the standard typing looks much like ours did before we general-

ized from singular variables to sets of variables. How, then, might we type addition?

let add : [𝛼] int -> [𝛽] int -> [𝛼 𝛽] int (* Ours *)
let add' : 𝛼 int -> 𝛽 int -> 𝛿 int with 𝛼, 𝛽 <= 𝛿 (* Theirs *)

Fig. 2. A first sighting of lattice constraints

Here, we catch our first sighting of the lattice constraints which ordinarily comprise information

flow specifications [Denning 1976]. At the point in our prior exploration where we chose to

generalize to sets of dependency variables rather than individual dependency variables for typing

add, two roads diverged—and we took the one less traveled by. The other option was to add

additional structure to the variables themselves, transforming them into elements from a semilattice
rather than leaving them inert. This is the more common option, so we review it here.

A semilattice has one primitive operation: join, written⊔. We can join two dependency variables 𝛼

and 𝛽 by writing 𝛼 ⊔ 𝛽 , returning another dependency variable. The returned variable is interpreted
to be greater than or equal to both 𝛼 and 𝛽—specifically the least such variable. That is, ⊔ generates

a partial ordering ⊑ over the carrier set of dependency variables. 𝛼 ⊑ 𝛽 means that 𝛼 can be joined

with other variables to produce 𝛽—in other words, 𝛽 represents information from 𝛼 . 𝛼 ⊑ 𝛽 allows

us to compare two dependency variables 𝛼 and 𝛽 to check if data from 𝛼 is permitted to flow to 𝛽 .

We use both operators in the type for add, writing ⊔ syntactically as a comma ‘,’ and writing ⊑
syntactically as <=. So we can parse the contents of the with clause as (𝛼 ⊔ 𝛽) ⊑ 𝛿 , or in natural

language, “both 𝛼 and 𝛽 must be able to flow to 𝛿 .” The dependency variable for the return value

is 𝛿 , and flows to the return value can be specified by way of partial orderings which place 𝛿

above other variables representing input information. When this function is called, the caller must

instantiate 𝛼, 𝛽, and 𝛿—just as we previously set 𝛼 = [secret1 secret2] in our typing for add1
in Section 1.1—with concrete variables such that the two former variables are both ordered less
than the latter one. This will satisfy the type constraints because ⊔ is guaranteed to yield the least

variable higher than both operands—so no higher than the instantiation of 𝛿 . As an aside, note that

all this constraint information must be digested by programmers to appreciate the type of add',
rather than relying on existing intuitions surrounding parametric polymorphism as in Section 1.1.

The argument for the simplicity of the latter is already taking shape. Note that lattice-based systems

ordinarily deploy simplification algorithms which attempt to elide constraints from types. We hold

off on applying these until the next section to avoid obscuring the fundamental mechanics.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:6 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

While picking through the above definitions, you may have noticed something curious. Our sets

of dependency variables also have semilattice structure! Join is given by set union, which induces

the partial order given by subset inclusion. When two sets are unioned, another set is produced

which has exactly the elements needed to be the superset of both, and no more. This structure is

known as the free semilattice in algebra. Free indicates that it is the simplest possible way to arrive

at a semilattice starting with some carrier set—of dependency variables, in our case. We simply

make each element of the set of variables into a singleton set to create the smallest elements of

our semilattice, and apply set union to generate more elements until we reach closure. This is

analogous to taking the power set of the carrier. Where before we used 𝛼1 <= 𝛼2 to denote that data
from source 𝛼1 flowed to destination 𝛼2, we now have [𝛼 𝛽] to mean that data from sources [𝛼]
and [𝛽]—subsets of the former—flowed into that destination.

Sharing the same algebraic structure does not collapse the two approaches into one, however–

far from it. As we will show in Section 3 and Section 4, the choice to use the free semilattice in

our setting has made all the difference. But we are not yet prepared to discuss why. For now, let us

review a final example from the prior section under a conventional information flow system. The

retyped password checker is shown in Figure 3.

let pass : [pwd] string = "katya" (* Ours *)
let check : [𝛼] string -> [𝛼 pwd] bool =

fun attempt -> attempt == pass
let pass' : pwd string = "katya" (* Theirs *)
let check' : 𝛼 string -> 𝛽 bool with 𝛼, pwd <= 𝛽 =

fun attempt -> attempt == pass

Fig. 3. Comparing Our Password Checkers

The situation is much the same as in Figure 2. We must somehow betray in the return type of

check' that it depends on pwd data. We can achieve this by specifying that the variable annotating

the return type must be ordered greater than pwd. The flow from the argument 𝛼 is accounted for

exactly as before. We look now to the mechanics underlying both flavors of information flow.

2.2 Reconstructing Information Flow via Hybrid Logic
The standard approach to information flow can be recovered from constructive modal logic [Pfen-

ning and Davies 2001] by way of partial necessity [Nanevski 2004], which provides an account

of indexed □ (modal necessity) connectives. Miyamoto and Igarashi [2004] follow this approach,

indexing the □ operator with elements ℓ from a semilattice. It is common [Abadi et al. 1999;

Choudhury et al. 2022; Liu et al. 2024; Shikuma and Igarashi 2008; Tse and Zdancewic 2004] to

furthermore eliminate the necessity semantics and transition to a lax modality [Fairtlough and

Mendler 1997] by admitting extra axioms on □ℓ . The □ℓ connective is kept around, because it is

indexed with information flow machinery ℓ , but retains none of its original purpose within modal

logic. We cannot provide the full story here—it is provided in Gouni et al. [2025, Appendix A] for

the interested reader—but alternative, cleaner logical foundations are possible.

We will describe how to arrive at the structural approach starting at constructive modal logic as

before. Modal logic was originally designed around reasoning about the possible states of affair,

or configurations of reality, that can be reached from our current one. These states are known

as worlds. □𝐴 can be read as “in all reachable worlds, the proposition 𝐴 will be true”. In usual

presentations of modal logic, reachability of worlds is defined by a relation—which in our case will

be a partial order ⊑—on worlds ℓ , where ℓ1 ⊑ ℓ2 means that ℓ2 is reachable from ℓ1. This is called a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:7

Kripke semantics and is separate from the syntax of modal logic, underlying it. Partial necessity

as previously mentioned can be deployed to pull—or internalize—worlds into the syntax of the

logic by indexing □ with worlds ℓ : each world-indexed necessitation □ℓ identifies the world ℓ at

whose accessible worlds it is true. In other words, in order to access some information at world

ℓ , the current world ℓ ′ must have accounted for ℓ as a dependency—ℓ ′ must be reachable from ℓ

in the semantics. The first core insight here is that information flow variables denote worlds.
Worlds hold a special place at the heart of modal reasoning, though, and partial necessity offers

little insight about them—it is oblivious to the fact that it is working with world indices.

This is a job for hybrid logic [Prior 1968], an alternative approach to generalizing standard modal

logic designed around internal reasoning about worlds. Hybrid logic reifies worlds as a first-class

syntactic construct rather than leaving them implicit in the semantic realm or judgemental structure,

or relegating them to an index into an existing connective. It does this via a satisfaction operator
@𝑤𝐴 read as “at world 𝑤 , proposition 𝐴 should be true.” The usual introduction and elimination

rules for @𝑤𝐴 are given in red in Figure 4. The form of the typing judgement is Γ ⊢ 𝑀 : 𝐴 [𝜙] and
can be read "Under assumptions Γ, expression𝑀 has type 𝐴 at world 𝜙 ."

@I
Γ ⊢ 𝑀 : 𝐴 [𝜙]

Γ ⊢ 𝑀 : @𝜙𝐴 [𝜙 ′]

@E
Γ ⊢ 𝑀 : @𝜙𝐴 [𝜙 ′]
Γ ⊢ 𝑀 : 𝐴 [𝜙]

@E-new
Γ ⊢ 𝑀 : @𝜙𝐴 [𝜙 ′]
Γ ⊢ 𝑀 : 𝐴 [𝜙 ∗ 𝜙 ′]

Γ ⊢ 𝑀 : 𝐴 [𝜙]
Γ ⊢ 𝑀 : @𝜙𝐴 [𝜙 ′]

@I

Γ ⊢ 𝑀 : 𝐴 [𝜙]
@E

Γ ⊢ 𝑀 : 𝐴 [𝜙]
Γ ⊢ 𝑀 : @𝜙𝐴 [𝜙 ′]

@I

Γ ⊢ 𝑀 : 𝐴 [𝜙 ∗ 𝜙 ′]
@E-new

Γ ⊢ 𝑀 : 𝐴 [𝜙] 𝜙 ⊑ 𝜙 ∗ 𝜙 ′

Γ ⊢ 𝑀 : 𝐴 [𝜙 ∗ 𝜙 ′]
Sub

Fig. 4. Satisfaction in Hybrid Logic and its Soundness

This setup is adapted from Reed [2009]. Rather than abstract world variables ℓ , the worlds in

these rules consist of elements 𝜙 of a free commutative monoid generated from a set of atomic world

variables 𝛼1, 𝛼2, . . . , 𝛼𝑛 . That is, 𝜙 = 𝛼1 ∗ 𝛼2 ∗ . . . ∗ 𝛼𝑖 . This is quite close to a semilattice, which is

what we need for information flow. It is lacking only idempotency, or the property that 𝛼 ∗ 𝛼 = 𝛼 ,

so we add it to turn each 𝜙 into an element of a free semilattice. The join operation ⊔ is given by

set union ∪ as described in Section 2.1. There are variants of hybrid logic which do not represent

the structure of worlds using a free monoid or semilattice, but the guiding intuition behind hybrid

logic is to pull as much of this structure as possible into the syntax. Elements from a parameterized

semilattice ℓ and ℓ ′ have no meaning except that provided externally, outside the syntax, but join

in a free semilattice (𝛼 ∗ 𝛽) ⊔ 𝛿 = 𝛼 ∗ 𝛽 ∗ 𝛿 is immediate from the notation of each element. The

next section will show that this choice simplifies specifications; the section after will place it at the

heart of a sound and compositional declassification mechanism.

We are not quite at a system suitable for information flow yet. We would like to be able to state

that𝑀 has dependencies 𝜙 at type 𝐴—something akin to □ℓ𝐴—by saying @𝜙𝐴, but it turns out this
will not quite suffice. The problem is the @E rule, which wholesale replaces the current world 𝜙 ′

with the 𝜙 inside the satisfaction operator. For information flow, we need to keep track of the old

world, as well. We must not forget the ambient security level! Our second core insight comes from

Pfenning and Davies [2001], who suggest a solution in the form of world paths.World paths keep
track of the history of your traversals through worlds, or the sequence of worlds you have

‘walked through’. We update the elimination rule to @E-new, which now preserves the old world

path 𝜙 ′ and joins it with the world path 𝜙 obtained by eliminating the satisfaction operator. Each

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:8 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

dependency 𝛼 in the judgemental 𝜙 is a world previously traversed and so recorded on the path. For

subtle reasons elucidated in Gouni et al. [2025, Appendix A] and by Nanevski [2004], no notion of

necessity exists in this connective. In short, indexing the necessity connective with modal worlds,

as with other approaches, precludes its removal. By instead using hybrid logic to syntactically reify

worlds, the core machinery for information flow emerges as a matter of satisfaction.2

Note that @E-new is no longer symmetric to @I. This appears to break local soundness, as shown

in the second row of Figure 4. The issue is that reducing away pairs of introductory and eliminatory

rule applications should not change the type𝐴 or world 𝜙 in a way that is unachievable through the

other rules of the logic—that is, introduction followed by elimination does not let us prove anything

we could not before. This obviously holds for @I and @E, as evidenced by the leftmost derivation,

but not when the latter is replaced with @E-new, producing an extra 𝜙 ′ in the conclusion. Local

soundness is retained via a subsumption rule Sub which permits the𝑀 : 𝐴 [𝜙] at the top of each of

the first two derivations to be used directly to prove𝑀 : 𝐴 [𝜙 ∗𝜙 ′]. A different solution arises from

exploiting the proof-theoretic concept of polarity. This is the strategy we will adopt when setting

up our type system in Section 5.1. But in either case, local soundness is retained.

@E-new

Var

pass : [pwd] string ∈ . . .
. . . ⊢ pass : [pwd] string [𝛼]
. . . ⊢ pass : string [𝛼 ∗ pwd]

attempt : [𝛼] string ∈ . . .
. . . ⊢ attempt : [𝛼] string [pwd]

Var

. . . ⊢ attempt : string [𝛼 ∗ pwd]
@E-new

pass : [pwd] string, attempt : [𝛼] string ⊢ pass == attempt : bool [𝛼 ∗ pwd]
Eqals

pass : [pwd] string, attempt : [𝛼] string ⊢ pass == attempt : [𝛼 pwd] bool [𝜖]
@I

Fig. 5. Derivation for the Body of check

Hybrid logic will offer one more fundamental insight, but before that, we have roughly all the

tools we need to work through the body of check from Figure 3, shown in Figure 5. We will assume

a typing for a comparison operator which requires both of its arguments to be at the same world

path, and a variable rule which permits variables to be typed at any world. The syntax [𝛿 𝛽] A is

interpreted as a satisfaction operator, namely @𝛿∗𝛽A. We use 𝜖 for the empty world path following

Reed [2009]. Reading from the bottom of the derivation, we start by applying @I—reading the rule

itself bottom-up—to extract the bool from the satisfaction operator. We then apply our imagined

equality rule, producing a goal for each operand. For the left goal, we continue bottom-up by

applying @E-new to give us pass at type [pwd] string, drawing pwd from the world path in its

conclusion. We finish with the variable rule. The right operand is analogous.

What is the final affordance of the hybrid setting? From the logic perspective, one of the primary

motivations for hybrid logic is in its explicit treatment of quantification over worlds. From the

information flow side, observe in the examples we have seen the prevalence of quantification—or

polymorphism—over dependencies. We have not yet written a single program that does not rely

on dependency polymorphism, even in introductory cases, and the rest of this paper will not

contain any. Generic programming is broadly useful, but in the information flow setting it becomes

absolutely essential. An information flow system without polymorphism cannot express useful

programs without significant amounts of duplication. You may need to rewrite the same function

for almost every single call site, because each usage will likely differ in its information dependencies.

2
Satisfaction here is at a lax modality [Fairtlough andMendler 1997; Moggi 1989], due to @E-new structuring the judgemental

𝜙 as an effect [Katsumata 2014]. The latter is connected to possibility [Benton et al. 1998], which becomes lax in the absence

of necessity [Nanevski 2004, §4.1.1]. Section 5.1 treats this effectful structure via polarity.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:9

This is our third and last core insight: quantification over dependencies is essential and must
be a first-class concern. Hybrid logic will be of assistance one last time, deploying its inbuilt

ability to quantify over the worlds in its syntax. The setup for quantification will be both simple

yet general enough to let declassification emerge as a consequence.

Observe the parallels between the core insights from the preceding story and those from Sec-

tion 1.1. Our earlier introduction of dependency sets corresponds to world paths here, and polymor-

phism (or quantification) shows up fundamentally in both. As promised there, the affordances of our

setup—the combination of world paths/dependency sets and quantification/polymorphism—will

turn out to be the key to performing declassification in a modular, elegant way. We hold off on

discussing these points until Section 4 and Section 5. The next section builds more intuition through

a number of examples.

3 More Examples and Subtleties
In this section we review a few potentially subtle details that make the structural approach to

information flow easier to use in practice. These do not emerge as ad-hoc heuristics, but are

motivated by fundamental affordances bubbled up from the logical and type-theoretic foundations

of our system. We start not with a feature we have, but with one we lack.

3.1 Uniformity, or Absence of Policies
In standard theories of information flow working in terms of an arbitrary semilattice, it is common

to tweak the structure of the lattice to model information flow policies. For instance, imagine

that Alice trusts Bob. We could have a two element semilattice where alice ⊔ bob = bob and so

alice <= bob. Why is this useful? Functions like in Figure 6 become typable.

policy alice <= bob

let expected : bob string = "nemmerle"
let msg_bob : alice string -> 𝛼 string -> 𝛽 string with 𝛼, bob <= 𝛽 =

fun alice_secret msg_str ->
if alice_secret == expected then msg_str else panic

Fig. 6. Declaring a Custom Dependency Ordering

This program allows Alice to message Bob by passing msg_bob strings, which Bob can then

read. Alice must provide the correct secret to msg_bob so Bob knows it is the right person. There

is something odd going on here. We pass data at levels alice and 𝛼 as the first two arguments

to msg_bob. The computation of the function body is certainly dependent on both arguments:

alice_secret is used in a conditional guard, and msg_str is returned from one of its branches.

However, the constraints on the return dependency 𝛽 indicate that it only contains data from 𝛼 and

bob. This is because the alice dependency induced by comparing against alice_secret in the

conditional guard is subsumed by the bob dependency induced by the expected variable against
which it is compared. The policy declares that alice can flow into bob, so it does.

This can be expressed structurally, but not in this way. In particular, it is not possible in our setting

to simply declare a partial ordering on dependencies [𝛼] and [𝛽], because our dependencies are
inert. They have no implicit structure, being determined by their syntax. [𝛼] can only be partially

ordered less than a dependency set that contains it, like [𝛼 𝛽]. This means that two dependency

sets can be compared for partial ordering at a glance, without having to keep declared policies in

working memory. Our experience is that the usage of orderings which violate the one given

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:10 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

structurally are the exception rather than the norm, so should not be applied pervasively
for the whole program. Section 4.4 will show a local, computationally relevant alternative to the

above, leveraging the same machinery as for declassification. We still have not made a strong case

for the simplicity of our approach yet. We look to Figure 7 to make it.

let alc : 𝛼 int -> 𝛼 int
with alice <= 𝛼

let bob : 𝛼 int -> 𝛼 int
with bob <= 𝛼

let both : 𝛼 int -> 𝛽 int * 𝛿 int
with bob <= 𝛿

and alice <= 𝛽

and 𝛼 <= 𝛽, 𝛿

let both x = (alc x, bob x)

let alc : [𝛼] int -> [𝛼 alice] int
let bob : [𝛼] int -> [𝛼 bob] int

let both : [𝛼] int ->
[𝛼 alice] int * [𝛼 bob] int

let both x = (alc x, bob x)

Fig. 7. Alice and Bob Sharing a Computation

This program moderates flows between Alice and Bob, who want to perform computation

together but do not want their information to be intermingled or revealed to the other. Looking first
to the program on the left, alc and bob are the functions that represent their computations. Each

takes as argument an int and mixes either alice’s or bob’s data into it. This is indicated by the

alice and bob dependencies lower bounding the 𝛼 dependency in their return types. Note that

we are applying simplification algorithms in this example. We might have typed alc as given for

alc' below. Instead the simplification algorithm recognizes that whatever the dependency level of

let alc' : 𝛼 int -> 𝛽 int
with alice, 𝛼 <= 𝛽

the argument passed to alc, it can be raised until it is above alice, which loses no generality and

preserves the soundness of dependency tracking. Next, the function both operationally invokes

alc and bob in each projection of a pair and returns the pair. That this computation respects the

desired separation property is not easy to determine from the type, however. We must instead

confront a bag of constraints which, once analyzed, will hopefully say what we want.

Looking to the conjoining program on the right, the terms are exactly the same. The types of

alc and bob again state that the return type of each depends on its input and on data from alice
and bob. The indication of this fact with [𝛼 alice] is arguably already more direct. We need no

simplification algorithms to arrive at this type—it is the only one that accounts for the flows from

the argument 𝛼 and alice. The biggest difference is in the type of both, which states that data 𝛼

from its argument flows to each element of the returned pair, and data from alice and bob flows

separately to each projection. From this we immediately know that the separation property we

wanted is preserved by both. If data from Alice had been passed to Bob, or vice versa, we would

see a set [alice bob . . .] containing dependencies from both. At a glance, we see nothing of the

sort. It is of course possible to use both to violate the separation property, but this would again

be obvious at the callsite; this is in line with prior work [Pottier and Simonet 2002]. Next, we

reconsider the heuristic of making fine-grained dependency tracking pervasive.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:11

let const : [𝛼] int -> [] int
let const _ = 10

let alice : [alice] int
let alice = 0

let result : ? int
let result = const alice

Fig. 8. The Constant Function

3.2 The Benefits of Explicit Satisfaction
We have so far carried an implicit assumption—mirrored by other information flow systems [Pottier

and Simonet 2002]—that all dependencies are tracked granularly. That is, all values carry their

dependencies with them through being passed into and returned from functions. As an illustration,

look to Figure 8. What dependency set should the ? be? The empty set [] of course! When we

evaluate the call const alice, 𝛼 gets instantiated to [alice]. 𝛼 does not appear in the return

type, so this has no effect. For the constant function, we want precise tracking. However, most

functions are not the constant function: they have at least some arguments upon which the return

value is guaranteed to depend. For instance, consider the type for add given in Section 1.1. Need it

have any information flow content at all, since its return value will always depend on both of its

arguments? The clean logical foundations of our system help us answer this.

3.2.1 Polarity. A tool from proof theory, polarity, suggests that we need not. Polarity classifies

types into positive—defined by their constructors—or negative—defined by their behavior when

used. Booleans and lists are positive because we think of them by the form of their inhabitants,

like True and Cons(. . .). Functions are negative because they are characterized by their behavior

when we apply them to arguments, not by their implementation. Positive types are connected to

values, and negative types to computations [Levy 1999]. Remember that the goal of information

flow is to map the inputs of a computation to its outputs. Polarity implies that positive types

need not have interesting information flow specifications, because they do not pertain to com-

putations, but negatives must. In particular, positive types should not granularly track—that is,

encapsulate—information flows, but negative types should. For instance, lists are a positive type, so

the dependencies of its elements are not tracked separately but propagated to the dependency set

for the entire list. Meanwhile, function types should not leak information dependencies contained

in their bodies until they are called, so these dependencies must be captured in their return type.

Not so for their arguments, which should be determined by the polarity of each argument type.

Luckily, polarity does not force a predetermined coarseness of tracking on us, besides as a per-type

default, but permits us to choose. The connective [𝛼] A—which is the satisfaction operator from
Section 2.2—is of negative type. If granular information flow tracking is desired within positive

types, a satisfaction operator can be introduced to do so.

Our view on polarity in information flow provides the following: the granularity of depen-
dency tracking should be type driven, rather than using a heuristic of maximally pre-
cise tracking everywhere. This will allow us to simplify types, writing the type of add as

int -> int -> int. int is a positive type, so does not encapsulate any dependencies, and because

this eliminates all dependencies on the arguments the return value need not encapsulate any either.

The ambient world path—or security context—𝜙 from the typing judgement in Figure 4 is given

programmatic meaning now: it tracks dependencies not encapsulated inside the type. Though

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:12 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

we did not provide syntax for introducing and eliminating satisfaction in that section, we might

imagine that the syntax #𝑒 introduces it, internalizing the current ambient dependencies into the

type. Thus if x has type int and the ambient security context is 𝛼 , the expression #x will have type
[𝛼] int. Similarly, we use !𝑒 to eliminate satisfaction and move the dependencies annotated in

the type of an expression from the type to the ambient security context. Putting these together,

the expression #(add !alice !alice) would have type [alice] int as before. alice is tracked

ambiently after !alice until #(. . .).
Practically, we should be able to let the language infer satisfaction for us. An algorithm to do

this seems straightforward enough: if we have an 𝑒 : A but need an expression of type [𝛼] A,
then attempt to apply satisfaction introduction. Analogously for the reverse direction. We leave the

formulation of this algorithm as future work, assuming it for the time being for convenience. The

important point is that we can exploit polarity to inform and control the granularity of dependency

tracking. Prior work has pursued expressivity results [Rajani and Garg 2018] regarding different

degrees of granularity, but has not identified the connection to polarity which informs when
dependencies should be tracked.

3.2.2 Dependency Elision. Based on the ideas above, our system supports an interesting and useful

type simplification pattern. The type for map1 in Figure 9, specialized to lists of integers, precisely

characterizes information flow for this function, and is comparable (even slightly better, due to the

benefits noted in Section 3.1) to the types given for map by other information flow systems.

let map1 : [𝛼] ([𝛽] int -> [𝛿] int) -> [𝜎] list ([𝛽] int) ->
[𝛼 𝜎] list ([𝛿] int)

let map2 : ([𝛽] int -> [𝛿] int) -> list ([𝛽] int) -> list ([𝛿] int)
let map3 : (𝐴 -> 𝐵) -> list 𝐴 -> list 𝐵

Fig. 9. Finding Simplifications in Map

Reading from left-to-right, we first annotate the function argument given to map1 with 𝛼 so

that when it is used inside the body it can induce an 𝛼 dependency. The function itself takes a

[𝛽] int as argument, which is the type of the contents of the list, and returns a [𝛿] int, the
type of the contents of the returned list. This does not suffice to describe the dependencies of

either the argument or the returned lists, though, because while 𝛽 and 𝛿 describe the dependencies

of their contents, the structure of the list may itself have dependencies. For instance, the length

of a list may betray information about the number of bits in a cryptographic key. Since lists are

positive types, it would not ordinarily be allowed to treat these distinctly, but we manually do so by

using a satisfaction type for the elements. So we introduce a 𝜎 dependency for the argument list to

represent the structure information. The structure of the returned list is dependent on both 𝜎 and

𝛼 , because the dependencies from the higher-order argument must be captured in the return value.

Precision can be useful, but this type is more complicated than we might like. Looking at the

type of map1 more carefully, we see that 𝛼 and 𝜎 both occur in outermost satisfaction types in the

argument types and on the return value. When such a pattern arises, the corresponding variables

can be removed entirely without losing any precision, which we call dependency-elision. The
unmentioned dependencies on the arguments will then be propagated ambiently to the whole

application expression. The resulting type is given for map2. This simplification is not possible

in systems which do not follow the directive given by polarity and instead track dependencies

maximally granularly everywhere [Liu et al. 2024; Pottier and Simonet 2002], for instance forcing

positive types like list to always hold their structural dependencies. A further simplification can

be made in this case: the standard polymorphic type of map, reproduced in map3, now captures

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:13

that of map2. So it can be used to track information flow with no loss in precision from map1. For
simplicity and clarity the formal system in Section 5 focuses on dependency polymorphism; we

leave an extension of the system that supports type polymorphism to future work.

4 Declassification
The essence of declassification, as hinted, is quantification and dependency sets (i.e. world paths from
hybrid logic). We rely on the same fundamental machinery used to ensure modularity across most

modern typed languages. In that respect it should be uncontroversial. The core of the technique

can be subtle for those unfamiliar with existentials from prior work on type abstraction [Mitchell

and Plotkin 1985], but we will use simple examples to make the ideas more accessible.

4.1 Explicit, Higher-RankQuantification and Dependency Sets
When we typed the identity function as with id_implicit in Figure 10, we omitted the bindings of

the 𝛼 variables. We now give a more explicit version as id_explicit, matching the formal system

to be described in Section 5. The difference is the forall 𝛼 sitting in front of the type signature,

called a quantifier. This construct acts as a binder for 𝛼 : where let binds term-level variables,

forall binds type-level variables.

let pass : [pwd] string = "katya"

let id_implicit : [𝛼] int -> [𝛼] int
let id_explicit : forall 𝛼 . [𝛼] int -> [𝛼] int

let v1 : [pwd] int = id_implicit pass
let v2 : [pwd] int -> [pwd] int = id_explicit [pwd]
let v2' : [pwd] int = v2 pass

Fig. 10. Exposing the Type of the Identity Function

v1 shows the function id_implicit being applied as we have done so far, simply passing it an

argument with dependencies [pwd] and expecting that the 𝛼 in its type will change to reflect these

dependencies. v2 shows the plumbing: we first instantiate id_implicit to [pwd], whereupon
the type system substitutes away the 𝛼 for that set of dependencies. The type that results is a

function with nearly the same input and output types, but which is no longer polymorphic in 𝛼 . In

v2' we apply v2 to the same argument pass as before—which matches the expected dependency

set [pwd]—yielding the same type as in v1. foralls are usually handled transparently when

polymorphism is in use, but declassification will require us to explicate them.

4.2 ‘Where’ Declassification: Disappearing Dependencies withQuantification
We now illustrate declassification in our system, using the what-where-when-who framework of

Sabelfeld and Sands [2009] to structure our discussion. We start by asking where can quantifers go?
They have so far appeared exclusively and implicitly in prefix position, or at the beginning of the

function signature. Consider the type higher_rank in Figure 11. The forall-quantified 𝛽 here is

no longer in prefix position, because it has been moved inside the higher-order function. This is

called higher-ranked quantification.

Here our goal is to allow a function defined by client code to compute with a secret number

without being able to reveal it to the outside world until the computation is done. When the

computation finishes, the final answer is revealed. Observe that num in client has type [𝛽] int.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:14 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

type higher_rank = (forall 𝛽 . [𝛽] int -> [𝛽] int) -> int

let impl : higher_rank = fun compute -> compute [] 7

let client : int = impl (fun num -> num + 123)

Fig. 11. Higher-RankQuantification

We add 123 to it, and then return it as the result of the higher-order function. The whole function

is passed to impl, which gives us back an int. Inspecting impl we see that it sets num to 7. So
the higher order function passed to it by client will add 123 to 7. The sum 130 is returned to

client as the result of the computation. This is dependent on the initial value of num, which has

dependency 𝛽 , but 𝛽 does not occur in the type of client! Indeed, 𝛽 is not in scope there. The

reason 𝛽 disappears is because client is polymorphic in 𝛽 . This means that its logic must be written

without knowing what 𝛽 actually is—as though 𝛽 could be anything. impl takes advantage of this

by instantiating 𝛽 to []. Inside the higher-order function in the body of client, the dependency 𝛽

must be treated like any other. However, when 130 is sent to impl, where 𝛽 is set to [], it returns
a [] int. We implicitly unwrap the now-unnecessary satisfaction operator to yield just [] int.
In Sabelfeld and Sands’s framework, we bound where the disappearance—or declassification—

occurs to the lexical scope for 𝛽 . Observe that this is not declassification in the typical [Sabelfeld

and Sands 2009] sense of violating the faithfulness of dependency tracking. Rather, we simply

exploit the internal knowledge of 𝛽’s emptiness to eventually elide it. This work demonstrates that

declassification in the usual sense is not needed to expose the programming facilities offered by it.

4.3 ‘What’ Declassification: Revisiting Password Checking
We can now solve the problem with check from the introduction, which will involve controlling

what information can be declassified. Our solution is laid out in Figure 12. We start by generalizing

the schema of higher-ranked quantification, represented by the passwd_checker type. There is

now a quantified variable 𝛼 which allows us to return data at any dependencies. Importantly, 𝛼

cannot mention 𝜋 because it is scoped outside of it. In fact, the 𝜋 is not universally quantified

anymore—another name for forall—but existentially quantified. The ability to encode existential

quantification by leveraging universal quantification as shown is discussed in Girard et al. [1989,

§11.3.5]. Existentials allow us to realize declassification fully generally.
𝜋 plays the same role as pwd from our first attempt in Section 1.1. As in the preceding section

we use a higher-order function to allow the client to compute on a secret value, then declassify

the final result. This time, however, we provide the client with a secret value pass along with

methods that can manipulate it: check and hash. To describe an interface exposing these elements

we use the 𝐹 (𝜋) notation, which is a template that takes a dependency variable as an argument and

splices in a record containing methods typed at that variable. impl works on the same principle as

before, instantiating the existential dependency 𝜋 to the empty set of dependencies. It lives up to

its namesake, providing implementations of each of the exposed methods. The clients are more

interesting. client1 exhibits a standard usage, instantiating 𝛼 to [] and using check. client1 is

of type bool, as was promised in Section 1.1. So we have successfully declassified exactly the bool
resulting from the password check. client2 attempts to instantiate 𝛼 with [𝜋] so it can try to

do the password check without going through check, but existential quantification bars it from

doing so. 𝜋 is not in scope at the point of instantiation! client3 instantiates 𝛼 to [], but again
accesses password data through imports.pass. This induces a 𝜋 dependency—since the template

was called with 𝜋 as an argument—which will not check against the empty set.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:15

𝐹 (𝜋) ≜ {
pass : [𝜋] string,
check : forall 𝛽 . [𝛽] string -> [𝛽] bool,
hash : forall 𝛽 . [𝜋 𝛽] string -> [𝛽] string

}

type passwd_checker = forall 𝛼 . (forall 𝜋 . 𝐹 (𝜋) -> [𝛼] bool) -> [𝛼] bool

let impl : passwd_checker = fun compute -> compute [] {
pass = "katya",
check = fun attempt -> attempt == pass,
hash = fun pass_str -> sha256sum pass_str,

}

let client1 : bool = impl [] (fun imports -> imports.check "arren")
let client2 : bool = impl [𝜋] (fun imports -> "arren" == imports.pass) �
let client3 : bool = impl [] (fun imports -> "arren" == imports.pass) �

Fig. 12. A Fancier Password Checker

There is one point left to illuminate. Look to hash, which permits password-dependent strings’

hashes to be leaked. From a client’s perspective, such a function is possible when specified using

world paths / dependency sets, but is not possible under an arbitrary semilattice-based theory of
information flow. When calling hash, the information flow content of the data passed to hash’s
first argument must be able to be uniquely decomposed into the dependencies which comprise it.

This allows hash to ‘match’ on dependencies in its input type and remove them, as it does with 𝜋 .

Joining in arbitrary lattices does not necessarily preserve information about the inputs, preventing

the client from performing this decomposition, but the same in a free semilattice does.

Scaling the existential approach to practical programs necessitates being able to express declassi-

fiers like hash. Otherwise, one is relegated to declassifying only by virtue of exported methods

which do not induce some dependency, like check, rather than being able to actively remove that
dependency in the style of hash. For instance, you may wish to perform some string processing on

password data—say, padding it with a nonce—before hashing it. If we could not express functions

like hash which remove dependencies from a given computation, this would require a specialized

function in the style of check which does the desired padding, followed by hashing, to be exported

from the password checker interface. In the general case, each individual use-case would require

specialized support from the password checker itself. This is neither modular nor scalable.

The general problem here is highlighted by Cruz and Tanter [2019], who import the themachinery

of faceted types to address it. It is remedied here without the need for specialized modifications to the

type system. At an intuitive level, declassifying functions like hash can be seen as a computationally

relevant ordering on dependency sets which may violate the one given structurally. Specifically,

hash can be read as an ordering [𝜋 𝛿] ⊑ [𝛿]—note that the left hand side is not a subset of

the right—that must be manually applied wherever it is used, transforming expressions at [𝜋 𝛿]
into those at [𝛿]. So this allows us to preserve the uniform structure of our information flow

specifications while, in effect, introducing information flow policies on them. Let us review the

example in Section 3.1 where we confronted policy declarations to see if we can capture them now.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:16 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

open Alice with [bob] importing
alice,
reveal_alice : [alice] string -> [bob] string

let expected : [bob] string = "nemmerle"
let msg_bob : [alice] string -> [𝛼] string -> [𝛼 bob] string =

fun alice_secret msg_str ->
if reveal_alice alice_secret == expected then msg_str else panic

. . .

Fig. 13. Declaring a Custom Dependency Ordering, Computation-Relevantly

4.4 ‘Who’ Declassification: Alice talks to Bob
The program in Figure 13 uses a slightly higher-level syntax for existential dependencies, closer

to what programmers would see while employing our approach to declassification. In particular,

we might imagine that Alice is defined as follows, where 𝛼 is used to propagate the output

type Alice = forall 𝛼 𝛽 .
(forall alice . 𝐹 (alice, 𝛽) -> [𝛼] A) -> [𝛼] A

dependencies as before and alice is existentially quantified. with instantiates 𝛽 with [bob], which
propagates it to the interface template 𝐹 (. . .). The importing clause brings into scope the existential
variable alice and a function reveal_alice from the instantiated interface 𝐹 (alice, bob). bob is

assumed to be in-scope. Functionally, this program revisits Figure 6, showing how our system can

model an information flow policy that allows Alice’s data to be sent to Bob. This corresponds to

the who dimension of declassification from Sabelfeld and Sands [2009].

Looking to the client machinery, assume 𝛼 is instantiated as needed for the eventual return

dependencies of the program in Figure 13, and similarly that A is as needed for the program’s

eventual return type since our core system lacks polymorphism over types. The purpose of the

reveal_alice function is to declassify alice data to Bob by relabeling it as bob data. As in the

prior two examples, the reveal_alice function can be implemented by the Alicemodule because

the latter has internally instantiated alice to a convenient dependency set—perhaps [] or [bob].
The only difference compared to Figure 6 is that reveal_alicemust be called explicitly, rather than

the flow being permitted implicitly. As a result, reveal_alice can transform Alice’s data arbitrarily

before revealing it to Bob, such as by redacting certain information or cryptographically signing it.

This is what is meant by computationally relevant: policies and declassification inherently have
computational content in our system. In our view, information flow policies and declassifiers

are one and the same; there should be no distinction between the two. The setup of both within

our system makes this apparent. This is particularly desirable in the context of, say, revealing

secrets: it is rare that a secret value should be leaked fully intact rather than after some redacting

computation. The computational irrelevance of ordinary policy declarations makes them unfit to

serve as a declassification mechanism, so computational relevance can be seen as unifying the two.

We could extend this example by introducing another existential module Bob which permits mes-

sages tagged with bob to be read without inducing a dependency, effectively declassifying messages

after processing them. Only when declassification remains of the major flavors of declassification

[Sabelfeld and Sands 2009]. This is easy enough: simply integrate the ordering constraints into the

function type which performs declassification. For instance, to declassify bids only after an auction

has closed, require the auction to run to completion before running a callback to declassification.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:17

Dependency 𝜙 Type 𝐴, 𝐵 Expr 𝑒, 𝑣 Dependency Vars 𝛼1, 𝛼2, . . . ∈ Δ Vars 𝑥1, 𝑥2, . . . ∈ Γ

Dependencies 𝜙 F ◦ | 𝜙 ;𝛼
Types 𝐴 F unit | [𝐴 · 𝜙] | 𝐴1 → 𝐴2 | ∀(𝛼.𝐴)

Expressions 𝑒, 𝑣 F ⟨⟩ | 𝑥 | #𝑒 | !𝑒 | 𝜆(𝑥 .𝑒) | ap(𝑒1; 𝑒2) | Λ(𝛼.𝑒) | 𝑒 [𝜙]

T-Unit

Δ; Γ ⊢ ⟨⟩ : unit | ◦

T-Var

Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴 | ◦

T-Consume

Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙
Δ; Γ ⊢ #𝑒 : [𝐴 · 𝜙] | ◦

T-Produce

Δ; Γ ⊢ 𝑒 : [𝐴 · 𝜙1] | 𝜙2

Δ; Γ ⊢ !𝑒 : 𝐴 | 𝜙1 ⊔ 𝜙2

T-Lam

Δ; Γ, 𝑥 : 𝐴1 ⊢ 𝑒 : 𝐴2 | ◦ Δ ⊢ 𝐴1

Δ; Γ ⊢ 𝜆(𝑥 .𝑒) : 𝐴1 → 𝐴2 | ◦

T-Ap

Δ; Γ ⊢ 𝑒 : 𝐴1 → 𝐴2 | 𝜙 Δ; Γ ⊢ 𝑒1 : 𝐴1 | 𝜙1

Δ; Γ ⊢ ap(𝑒 ; 𝑒1) : 𝐴2 | 𝜙 ⊔ 𝜙1

T-DepLam

Δ, 𝛼 ; Γ ⊢ 𝑒 : 𝐴 | ◦
Δ; Γ ⊢ Λ(𝛼.𝑒) : ∀(𝛼.𝐴) | ◦

T-DepAp

Δ; Γ ⊢ 𝑒 : ∀(𝛼.𝐴) | 𝜙 ′ Δ ⊢ 𝜙
Δ; Γ ⊢ 𝑒 [𝜙] : [𝜙/𝛼]𝐴 | 𝜙 ′

T-Sub

Δ; Γ ⊢ 𝑒 : 𝐴1 | 𝜙 𝐴1 ⊑Δ 𝐴2

Δ; Γ ⊢ 𝑒 : 𝐴2 | 𝜙

Fig. 14. TS/SCI: Type System for the Structural Calculus of Indistinguishability (Core Rules)

5 Metatheory
We have surveyed a zoo of interesting examples ranging beyond those in Section 1.1, but have

not introduced any new primitive notions! Even existential quantification as revealed in the last

section is simply re-using the same machinery introduced initially for polymorphism. This makes

our job in this section relatively straightforward.

5.1 Syntax and Typing: A Hybrid Type System
The core syntax and typing rules of our system, the Structural Calculus of Indistinguishability,
are shown in Figure 14. Our typing judgment is Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙 and can be read “Under in-scope

dependency variables Δ and in-scope term variables Γ the expression 𝑒 has type 𝐴 with set of

dependencies 𝜙 .” Dependencies 𝜙 play the same role as in Section 2.2, reifying the ambient security
level from Section 3.2.1. The type [𝐴 · 𝜙] corresponds to a satisfaction operator @𝜙𝐴 and uses

the syntax #𝑒 and !𝑒 for introduction and elimination. The corresponding rules T-Consume and

T-Produce look familiar, nearly mirroring @I and @E-new modulo syntax. The biggest difference is

that T-Consume concludes at the empty dependency set ◦, which will be important.

Starting simple, the introduction rule for unit states that a unit expression ⟨⟩ incurs no de-

pendencies. The variable typing rule shows the structure of the typing context Γ, which contains

variables at a particular type. Unlike other information flow systems, we do not annotate variables

in the context with security levels. They may carry dependency information in their type—using

[𝐴 · 𝜙]—if needed, but the entries in the context themselves are not annotated. This is in line with

the interpretation of the 𝜙 in the typing judgment as an effect. Only computations should have

effects; variables, being connected in a call-by-value language to values, should not [Levy 1999].

Moving on to functions, T-Lam is relatively standard. Strangely, however, it requires that its body

have no dependencies. This is a way of forcing its body to consume all its dependencies—that is,

represent them within its type 𝐴2 using T-Consume—before a lambda is allowed to form around

it. Forcing dependencies into function types is in line with the intuitions about granular tracking

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:18 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

and polarity from Section 3.2.1. There is also a premise Δ ⊢ 𝐴1, which we will return to shortly.

The application rule T-Ap propagates the function and argument’s dependencies to the application

expression in the conclusion, but is otherwise as usual. T-DepLam is the introduction rule for the

quantifier type ∀(𝛼.𝐴). It again requires the dependencies in its body to be consumed. Its premise

introduces an 𝛼 into Δ, the environment responsible for tracking the in-scope information flow

variables. This can be thought of analogously to the introduction rule for type abstraction in System

F [Girard 1986]. The elimination rule T-DepAp for quantifiers is instantiation, substituting the

instantiated 𝜙 into the inner type of the quantifier. This is analogous to type application in System

F. The type of id in Figure 1 under this syntax might be ∀(𝛼.[int · 𝛼] → [int · 𝛼]), using int as a
base type. A term under this type is Λ(𝛼.𝜆(𝑥 .𝑥)), but more are possible by using !𝑥 to extract out

the underlying int and compute with it as in Λ(𝛼.𝜆(𝑥 .#(!𝑥 + !𝑥))).
The premise Δ ⊢ 𝜙 appearing in T-DepAp is toward the same end as Δ ⊢ 𝐴1 from T-Lam. Its

purpose is to ensure the well-scopedness of all elements of the typing judgement within any

derivation. We want to be sure that whenever we have a valid type derivation, all dependencies 𝛼

in the expression 𝑒 , type 𝐴, and dependency set 𝜙 in the typing judgement are contained within Δ.
We also want to ensure that any term variables 𝑥 in 𝑒 are contained in Γ. Regularity establishes

this rigid lexical scoping. Δ ⊢ 𝐴 can be read as “all dependencies 𝛼 mentioned in 𝐴 are members of

Δ”; analogously for the other three scoping judgements.

Theorem 5.1 (Regularity). If Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙 and Δ ⊢ 𝐴𝑖 for each assumption 𝑥𝑖 : 𝐴𝑖 in Γ, then Δ ⊢ 𝑒
and Γ ⊢ 𝑒 and Δ ⊢ 𝐴 and Δ ⊢ 𝜙 .

Proof. By induction on a derivation of Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙 . □

Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙
Δ; Γ ⊢ #𝑒 : [𝐴 · 𝜙] | ◦

T-Consume

Δ; Γ ⊢ !#𝑒 : 𝐴 | 𝜙
T-Produce

Observe that all introduction rules for the connectives

so far introduced, namely [𝐴 · 𝜙], 𝐴1 → 𝐴2, and ∀(𝛼.𝐴),
conclude at the empty set of dependencies ◦. This is because
they are negative connectives. In line with the reasoning in

Section 3.2.1, all negative connectives must consume
their dependencies. This also provides a solution to the

local soundness issue noted with the satisfaction rules in Section 2.2, because T-Consume (unlike

@I) does not create a spurious 𝜙 ′ in its conclusion. The derivation is reproduced here.

Finally, T-Sub allows subsumption, which enables us to raise the security levels of programs’

types. Reading from the top, if one has 𝑒 at type 𝐴1 and a proof that 𝐴1 is a subtype of 𝐴2, then

T-Sub provides 𝑒 at type𝐴2. We have [𝐴1 ·𝜙1] ⊑Δ [𝐴2 ·𝜙2] when 𝜙1 ⊂ 𝜙2 and Δ ⊢ 𝜙2 and𝐴1 ⊑Δ 𝐴2.

This permits the security levels of expressions to be raised—that is, it permits them to add extra

dependencies to themselves. Beyond for [𝐴 · 𝜙] the subtyping judgment is standard so we elide its

definition. We also omit the operational semantics, which are as usual but for the syntax #𝑒 and !𝑒
for [𝐴 · 𝜙]. These act respectively as thunking and forcing thunks. Removing the syntactic forms

for these—and therefore the thunking semantics—presents no formal obstacle. We have found it

pedagogically easier to give them explicit syntax, since they can then be mentioned explicitly if

needed. The thunking semantics for their syntax simply aligns with the negative polarity [Levy

1999] of the satisfaction connective, discussed in Section 3.2.1. We look now to the positives.

5.1.1 Positive Connectives. Our system supports two positive connectives: positive products and

sums. T-InjL is one of two introduction rules for sums, the other being T-InjR. Observe that

the dependencies 𝜙 of the expression 𝑒 are propagated straightforwardly in both rules to their

conclusion. The type of the injection not witnessed is checked for scoping, to ensure regularity.

T-Case largely works as usual, but now accounts for the indirect flows from the expression 𝑒 being

branched on, adding its dependencies 𝜙 in the conclusion to those coming from 𝑒1 or 𝑒2. We require

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:19

Types 𝐴 F . . . | 𝐴1 +𝐴2 | 𝐴1 ⊗ 𝐴2

Expressions 𝑒, 𝑣 F . . . | l · 𝑒 | r · 𝑒 | case 𝑒 { l · 𝑥1 ↩→ 𝑒1 | r · 𝑥2 ↩→ 𝑒2 }
| ⟨𝑒1, 𝑒2⟩ | split 𝑒1 into ⟨𝑥1, 𝑥2⟩ in 𝑒2

T-InjL

Δ; Γ ⊢ 𝑒 : 𝐴1 | 𝜙 Δ ⊢ 𝐴2

Δ; Γ ⊢ l · 𝑒 : 𝐴1 +𝐴2 | 𝜙

T-Pair

Δ; Γ ⊢ 𝑒1 : 𝐴1 | 𝜙1 Δ; Γ ⊢ 𝑒2 : 𝐴2 | 𝜙2

Δ; Γ ⊢ ⟨𝑒1, 𝑒2⟩ : 𝐴1 ⊗ 𝐴2 | 𝜙1 ⊔ 𝜙2

T-InjR

Δ; Γ ⊢ 𝑒 : 𝐴2 | 𝜙 Δ ⊢ 𝐴1

Δ; Γ ⊢ r · 𝑒 : 𝐴1 +𝐴2 | 𝜙

T-Split

Δ; Γ ⊢ 𝑒 : 𝐴1 ⊗ 𝐴2 | 𝜙 Δ; Γ, 𝑥1 : 𝐴1, 𝑥2 : 𝐴2 ⊢ 𝑒1 : 𝐴 | 𝜙 ′

Δ; Γ ⊢ split 𝑒 into ⟨𝑥1, 𝑥2⟩ in 𝑒1 : 𝐴 | 𝜙 ⊔ 𝜙 ′

T-Case

Δ; Γ ⊢ 𝑒 : 𝐴1 +𝐴2 | 𝜙 Δ; Γ, 𝑥1 : 𝐴1 ⊢ 𝑒1 : 𝐴 | 𝜙 ′ Δ; Γ, 𝑥2 : 𝐴2 ⊢ 𝑒2 : 𝐴 | 𝜙 ′

Δ; Γ ⊢ case 𝑒 { l · 𝑥1 ↩→ 𝑒1 | r · 𝑥2 ↩→ 𝑒2 } : 𝐴 | 𝜙 ⊔ 𝜙 ′

Fig. 15. Positive Connectives for the Structural Calculus of Indistinguishability

𝑒1 and 𝑒2 to have the same dependency level. Introducing positive products works similarly with

respect to the flow of dependencies, with the introduction rule T-Pair propagating the dependencies

𝜙1, 𝜙2 from each of its subexpressions to the conclusion of the rule at 𝜙1 ⊔ 𝜙2. T-Split works the

same way as T-Case from an information flow perspective.

We see that the introduction rules for positives act transparently with respect to the judge-
mental dependencies 𝜙 , instead of being forced to encapsulate them and conclude at the empty

set. An alternative formulation of the introduction rule for products forces 𝑒1 and 𝑒2 to consume

their dependencies into their types; this would then be a negative product. Stemming from the

choice to have a separate type connective [𝐴 · 𝜙] for tagging types with dependencies—rather

than tagging each type with dependency information individually—the design of such a rule is

predetermined by polarity. Observe that negative (or lazy) products would track dependencies more

granularly than positive products, as expected from Section 3.2.1: each projection’s dependencies

can be distinguished from the other’s. Not so for positive products, which blend both projections’

dependencies 𝜙1 and 𝜙2 together. Positive products can be viewed as more general than negative

products in our setting, since we can simply use satisfaction for one or both elements of the pair.

As a rule, introduction forms for positive types will be transparent to dependency information,

while those for negative types will be opaque. This is in line with the interpretation of the former

as connected to values, and the latter to computations [Levy 1999].

5.2 Non-interference
We prove non-interference via a binary logical relation. We show that it satisfies a number of

desirable properties. We then show the fundamental theorem, which relates well-typed programs

to membership in the logical relation. Non-interference is captured with a corollary stating that

any function whose argument dependencies are not represented in its return dependencies must

be constant in its argument, fufilling our promise from Section 1.1. The proof treats declassification

without additional machinery beyond that for handling quantifiers. The definition of the logical

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:20 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] ≜ 𝜙1 @Δ 𝜙2 or 𝑣 val, 𝑣 ′ val, 𝑒 ↦−→∗ 𝑣, 𝑒′ ↦−→∗ 𝑣 ′,

𝑣 ∼ 𝑣 ′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ]
⟨⟩ ∼ ⟨⟩ ∈ unit | 𝜙1 [𝜙2] [Δ] ≜ true

l · 𝑣 ∼ l · 𝑣 ′ ∈ 𝐴1 +𝐴2 | 𝜙1 [𝜙2] [Δ] ≜ 𝑣
∗∼ 𝑣 ′ ∈ 𝐴1 | 𝜙1 [𝜙2] [Δ]

r · 𝑣 ∼ r · 𝑣 ′ ∈ 𝐴1 +𝐴2 | 𝜙1 [𝜙2] [Δ] ≜ 𝑣
∗∼ 𝑣 ′ ∈ 𝐴2 | 𝜙1 [𝜙2] [Δ]

⟨𝑣1, 𝑣2⟩ ∼ ⟨𝑣 ′1, 𝑣 ′2⟩ ∈ 𝐴1 ⊗ 𝐴2 | 𝜙1 [𝜙2] [Δ] ≜ 𝑣1
∗∼ 𝑣 ′

1
∈ 𝐴1 | 𝜙1 [𝜙2] [Δ],

𝑣2
∗∼ 𝑣 ′

2
∈ 𝐴2 | 𝜙1 [𝜙2] [Δ]

𝑣 ∼ 𝑣 ′ ∈ [𝐴 · 𝜙] | 𝜙1 [𝜙2] [Δ] ≜ !𝑣
∗∼ !𝑣 ′ ∈ 𝐴 | 𝜙 ⊔ 𝜙1 [𝜙2] [Δ]

𝑣 ∼ 𝑣 ′ ∈ 𝐴1 → 𝐴2 | 𝜙1 [𝜙2] [Δ] ≜ ∀𝜙 ′2 ⊑Δ 𝜙2, Δ ⊢ 𝜙 ′1, 𝑣1 val, 𝑣 ′1 val .

𝑣1
∗∼ 𝑣 ′

1
∈ 𝐴1 | 𝜙 ′1 [𝜙 ′2] [Δ] =⇒

ap(𝑣 ; 𝑣1) ∗∼ ap(𝑣 ′; 𝑣 ′
1
) ∈ 𝐴2 | 𝜙 ′1 ⊔ 𝜙1 [𝜙 ′2] [Δ]

𝑣 ∼ 𝑣 ′ ∈ ∀(𝛼.𝐴) | 𝜙1 [𝜙2] [Δ] ≜ Δ ⊢ 𝜙 =⇒ 𝑣 [𝜙] ∗∼ 𝑣 ′ [𝜙] ∈ [𝜙/𝛼]𝐴 | 𝜙1 [𝜙2] [Δ]

Fig. 16. Semantic Equality for the Structural Calculus of Indistinguishability

relation is given in Figure 16. Full proofs of all theorems referenced in this section can be found in

the accompanying artifact [Gouni et al. 2025, Appendix C].

The starred relation 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] can be read as “𝑒 relates to 𝑒′ at type 𝐴 with secu-

rity level 𝜙1 and observer level 𝜙2 under in-scope dependency variables Δ.” Here 𝑒, 𝑒′ are closed
expressions, containing no variables. We introduce a notion of an observer level [Kozyri et al. 2022]
which determines whether an “observer” of a program who is permitted to see certain dependencies

should be allowed to see the outputs of the program in question. If the security level—which plays

the same role as the 𝜙 in the typing judgment—is a subset of the observer level, then the answer is

yes. Otherwise, the answer is no. The 𝜙1 @Δ 𝜙2 in the definition of the starred relation codifies this,

and is called the non-interference condition. If the security level 𝜙1 of some related expressions is

not a subset of the current observer level 𝜙2, then to that observer, the expressions are equal. From

their perspective, no discriminating information can be gleaned. This is why non-interference is a

hyperproperty [McLean 1996], or inherently a matter of two or more related traces of evaluation: it

reasons about the observable differences between them.

If the non-interference condition in 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] is not triggered then the equality

must ultimately be established according to the type A. First, 𝑒 and 𝑒′ must evaluate to values

𝑣 val and 𝑣 ′ val. And 𝑣, 𝑣 ′ must be related at 𝑣 ∼ 𝑣 ′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ], the non-starred relation. The

definition of 𝑒
∗∼ 𝑒′ by evaluation immediately gives us the following two properties.

Lemma 5.2 (Closed→). If 𝑒 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and 𝑒 ↦−→∗ 𝑒1 then 𝑒1 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ].

Proof. By use of evaluation in 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and determinicity of evaluation. □

Lemma 5.3 (Closed←). If 𝑒 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and 𝑒1 ↦−→∗ 𝑒 then 𝑒1 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ].

Proof. By use of evaluation in 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and transitivity of evaluation. □

These two lemmas show that the logical relation is preserved by evaluation in both directions.
Lemma 5.3 is the critical one: if expressions 𝑒, 𝑒′ are logically related, then anything that evaluates

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:21

to them is also in the logical relation. This means that there are many expressions which are related

by the logical relation, but are not well-typed.

The relation 𝑣 ∼ 𝑣 ′ is mutually recursive with the starred relation and is defined inductively on

types in a standard way. For positive types it ensures that both sides have the expected canonical

forms, and that the insides of the canonical forms are related at the appropriate type. For negative

types it ensures they behave correctly under elimination. Within each case it recurses back onto

𝑒
∗∼ 𝑒′ to check the equality of the inner or eliminated expressions. This is important when the

security level is raised as in the cases for [𝐴 · 𝜙] and 𝐴1 → 𝐴2, because a higher security level,

or larger set, may satisfy the non-interference condition. Note that while the security level 𝜙1 is

monotonic with respect to non-interference, the observer level 𝜙2 is anti-monotonic.

Lemma 5.4 (Monotone). If 𝑒 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and 𝜙1 ⊑Δ 𝜙 ′
1
then 𝑒 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙 ′

1
[𝜙2] [Δ].

Proof. By straightforward induction on 𝐴. □

Lemma5.5 (Anti-monotone). If 𝑒 ∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙2] [Δ] and𝜙 ′2 ⊑Δ 𝜙2 then 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙1 [𝜙 ′2] [Δ].

Proof. By straightforward induction on 𝐴. □

Intuitively, 𝜙1 @Δ 𝜙2 is preserved by either adding elements to the left side, or removing

elements from the right. The former raises the security level, and the latter means the observer

drops permissions for viewing certain dependencies. That the dependency elision heuristic from

Section 3.2.2 preserves non-interference, and is therefore sound, can be justified via monotonicity:

it always produces equally as many or more dependencies into the ambient security level than the

non-elided variant, because argument dependencies get propagated ambiently to the application

expression. As mentioned, we leave the elision algorithm and its completeness for future work. We

next show that our logical relation satisfies certain properties of equivalence relations.

Lemma 5.6 (Symmetry). If 𝑒1
∗∼ 𝑒2 ∈ 𝐴 | 𝜙 [𝜙 ′] [Δ] then 𝑒2 ∗∼ 𝑒1 ∈ 𝐴 | 𝜙 [𝜙 ′] [Δ].

Proof. By straightforward induction on 𝐴. □

Lemma 5.7 (Transitivity). If 𝑒1
∗∼ 𝑒2 ∈ 𝐴 | 𝜙 [𝜙 ′] [Δ] and 𝑒2 ∗∼ 𝑒3 ∈ 𝐴 | 𝜙 [𝜙 ′] [Δ] then

𝑒1
∗∼ 𝑒3 ∈ 𝐴 | 𝜙 [𝜙 ′] [Δ]

Proof. By induction on 𝐴 and Lemma 5.6 in the 𝐴1 → 𝐴2 case to handle contravariance. □

Importantly, the logical relation does not satisfy reflexivity. For instance, the expression ⟨⟩
cannot be self-equated at any type other than unit, and in general related expressions must behave

appropriately for their declared type. Thus our logical relation is a partial equivalence relation,
satisfying symmetry and transitivity but not reflexivity. Finally, the fundamental theorem translates

well-typedness to membership in the logical relation. However, recall that while the typing rules

work with open expressions, the logical relation only works on closed expressions. We must

generalize the logical relation to account for open expressions. We begin by defining closing
substitutions which replace free dependency variables and term variables with appropriate forms.

(1) Define 𝛿 ∈ Δ ⇝ Δ′ as a map from each 𝛼 ∈ Δ to a dependency environment Δ′ ⊢ 𝜙 .
(2) Define:

(a) 𝛾 ∈ Γ [Δ′] as a map from 𝑥 ∈ Γ to an expression 𝑒 closed under term variables s.t. Δ′ ⊢ 𝑒
(b) 𝛾

∗∼ 𝛾 ′ ∈ Γ | 𝜙 [𝜙 ′] [Δ ⇝ Δ′] to mean that if Δ′ ⊢ 𝜙 ′ and 𝛿 ∈ Δ ⇝ Δ′ then we have

𝛾,𝛾 ′ ∈ Γ [Δ′] s.t. 𝛾 (𝑥) ∗∼ 𝛾 ′ (𝑥) ∈ 𝛿 (𝐴) | 𝜙 [𝜙 ′] [Δ′] for all 𝑥 : 𝐴 ∈ Γ
(3) Define Δ Γ ≫𝜙 ′

Δ′ 𝑒
∗∼ 𝑒′ ∈ 𝐴 | 𝜙 to mean that for all Δ′ ⊢ 𝜙𝛾 if 3a, 3b, and 3c then 3d.

(a) Δ′ ⊢ 𝜙 ′

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:22 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

(b) 𝛿 ∈ Δ ⇝ Δ′

(c) 𝛾
∗∼ 𝛾 ′ ∈ Γ | 𝜙𝛾 [𝜙 ′] [Δ ⇝ Δ′] (instantiated to 3a and 3b)

(d) 𝛿 (𝛾 (𝑒)) ∗∼ 𝛿 (𝛾 ′ (𝑒′)) ∈ 𝛿 (𝐴) | 𝛿 (𝜙) ⊔ 𝜙𝛾 [𝜙 ′] [Δ′]
𝛿 replaces dependency variables 𝛼 with dependency sets 𝜙 closed under Δ′. 𝛾,𝛾 ′ replace term

variables 𝑥 with closed expressions related at the type of the variable. The type itself is closed using

𝛿 . The security level 𝜙 represents the cumulative dependencies of all information contained in Γ. 𝛿
and 𝛾 apply the mappings in 𝛿 and 𝛾 simultaneously to all open variables in their arguments. The

generalized logical relation in item 3 is defined by using 𝛿 and 𝛾 on its expressions 𝑒, 𝑒′ and 𝛿 on its

type 𝐴 and security level 𝜙 . We invoke the starred relation on the substituted forms.

Theorem 5.8 (Fundamental Theorem). If Δ0,Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙 then Δ Γ ≫𝜙 ′

Δ0

𝑒
∗∼ 𝑒 ∈ 𝐴 | 𝜙 .

Proof. By induction on a derivation of Δ0,Δ; Γ ⊢ 𝑒 : 𝐴 | 𝜙 . □

The statement of the fundamental theorem splits up the information flow variable environment

from the typing judgment into Δ0 and Δ. Δ0 denotes the observer’s dependency environment. The
definition of equality of open expressions requires that Δ0 ⊢ 𝜙 ′ where 𝜙 ′ is the observer level. Δ0

provides an environment for a closing substitution on dependency variables 𝛼 to be closed under,
because all dependencies considered in the logical relation must be meaningful to the observer.

That the open and closed logical relations are relativized to a base Δ0 representing the observer’s

environment is key to the formal treatment of declassification. The constant function property we

desired in Section 1.1 emerges as a straightforward corollary of the fundamental theorem.

Corollary 5.9 (Constant Function). If we have Δ; Γ ⊢ 𝑒 : [𝐴1 · 𝜙1] → [𝐴2 · 𝜙2] | ◦ and 𝑐 val and
𝜙1 @Δ 𝜙2 then ◦ Γ ≫𝜙2

Δ 𝑒
∗∼ 𝜆(𝑥 .ap(𝑒 ; 𝑐)) ∈ [𝐴1 · 𝜙1] → [𝐴2 · 𝜙2] | ◦.

Proof. Follows directly from Theorem 5.8. We sketch the proof here.

(1) Assume 𝜙𝛾 and Δ ⊢ 𝜙2 and appropriate 𝛿 and 𝛾,𝛾 ′.
(2) To show [𝐴1 · 𝜙1] → [𝐴2 · 𝜙2] assume 𝑣1 ∼ 𝑣 ′

1
∈ [𝐴1 · 𝜙1] | 𝜙 ′1 [𝜙 ′2] [Δ] where 𝜙 ′2 ⊑Δ 𝜙2.

(3) Suffices to show ap(𝛾 (𝑒); 𝑣1) ∗∼ ap(𝜆(𝑥 .ap(𝛾 ′ (𝑒); 𝑐)); 𝑣 ′
1
) ∈ [𝐴2 · 𝜙2] | 𝜙 ′1 ⊔ 𝜙𝛾 [𝜙 ′2] [Δ].

(4) We have 𝜙1 @Δ 𝜙 ′
2
by properties of set inclusion.

(5) Obtain !𝑣1
∗∼ !𝑐 ∈ 𝐴1 | 𝜙1 [𝜙 ′2] [Δ] by non-interference, so 𝑣1

∗∼ 𝑐 ∈ [𝐴1 · 𝜙1] | ◦ [𝜙 ′2] [Δ].
(6) By Lemma 5.4 we have 𝑣1

∗∼ 𝑐 ∈ [𝐴1 · 𝜙1] | 𝜙 ′1 [𝜙 ′2] [Δ].
(7) Use Theorem 5.8 on the typing assumption for 𝑒 and instantiate with item 1 to get

𝛾 (𝑒) ∗∼ 𝛾 ′ (𝑒) ∈ [𝐴1 · 𝜙1] → [𝐴2 · 𝜙2] | 𝜙𝛾 [𝜙2] [Δ].
(8) If 𝜙𝛾 @Δ 𝜙2 then we have 𝜙𝛾 @Δ 𝜙 ′

2
and the goal is immediate. Otherwise:

(a) 𝛾 (𝑒) ↦−→∗ 𝑣2, 𝛾 ′ (𝑒) ↦−→∗ 𝑣 ′2, 𝑣2 val, 𝑣 ′2 val
(b) 𝑣2 ∼ 𝑣 ′

2
∈ [𝐴1 · 𝜙1] → [𝐴2 · 𝜙2] | 𝜙𝛾 [𝜙2] [Δ]

(9) Apply item 8b to item 6 to obtain ap(𝑣2; 𝑣1) ∗∼ ap(𝑣 ′
2
; 𝑐) ∈ [𝐴2 · 𝜙2] | 𝜙 ′1 ⊔ 𝜙𝛾 [𝜙 ′2] [Δ].

(10) Have ap(𝛾 (𝑒); 𝑣1) ↦−→∗ ap(𝑣2; 𝑣1), ap(𝜆(𝑥 .ap(𝛾 ′ (𝑒); 𝑐)); 𝑣 ′1) ↦−→∗ ap(𝛾 ′ (𝑒); 𝑐) ↦−→∗ ap(𝑣 ′2; 𝑐).
(11) The result follows by applying Lemma 5.3 twice to item 9 and each evaluation in item 10. □

The constant function property states that a function whose argument dependencies are not

a subset of those in its return value is observationally the constant function. Particularly, such a

function is observationally equivalent to a function which has its argument stubbed out with some

constant 𝑐 . From the perspective of the observer both the original function and that which ignores

its argument behave the same way. Observe that the final example from Section 1.1 falls under the

constant function theorem because ◦;𝛼 @Δ ◦. For completeness’ sake, we have unit+ unit � bool.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:23

Note that the correspondence of our logical relation with observational equivalence is apparent

from the fact that it does not introspect on the syntax of expressions under evaluation and from its

synchronizationwith polarity.We (1) do not examine the structure of negatively typed computations,

only observing their behavior under elimination, and (2) explicitly examine the canonical forms

of positive values. This is all done modulo an observer level, which can be seen as internalizing

observational equivalence. We have not yet made a point of declassification; we do so now.

5.3 Metatheoretic Mechanics of Declassification
Note that Corollary 5.9 only forces the function to be constant from the observer’s perspective.
Assume we have 𝜙1 @ 𝜙2 as before, observing at 𝜙2. We might implement a function typed at

[𝐴1 ·𝜙1] → [[𝐴1 ·𝜙1] ·𝜙2] as 𝜆(𝑥 .#𝑥). However, eliminating the inner satisfaction at 𝜙1 immediately

satisfies the non-interference condition and therefore the logical relation. The observer level 𝜙2

denotes our perspective: it says we cannot observe information at 𝜙1 so we may trivially equate

programs at level 𝜙1. That equality is subject to observability is central to non-interference.

Accounting for declassification requires us to generalize this idea. Instead of conditioning equality

merely on which dependencies can be observed, it is additionally conditioned on which dependencies
were available to observe. This is the role of the Δ which indexes the logical relation in Figure 16,

and accordingly Δ0 in Theorem 5.8. All dependencies which appear in the closed logical relation

must be scoped under Δ. The closing map 𝛿 and the logical relation’s handling of the quantifier

type ∀(𝛼.𝐴) are the foremost machinery which act to ensure this. As a consequence of fixing the

scope of dependency variables, we can choose whether to reason about existential dependencies

according to whether we wish to reason about declassification. We can explicate this in terms of

the schema for existential quantification from Figure 12.

Declassification...

Unobserved

Checked
Assumed ∀(𝛼.∀(𝛽.𝐹 (𝛽) →𝐴(𝛼))→ 𝐴(𝛼))

Fig. 17. Reasoning (or not) about declassification

Figure 17 shows the schema, annotated. We write 𝐴(𝛼) to mean that the type 𝐴 may contain 𝛼 .

Recall that 𝛽 is an existential dependency, and that 𝛼 cannot mention it. 𝐹 (𝛽) is an interface offering

declassifying functions like check and hash, as before. The schema for existential quantification

gives rise to two perspectives: (1) where any declassifying behavior is completely unobserved

because 𝛽 is not in scope, and (2) where the functions in 𝐹 (𝛽) are assumed to conserve equalities,

and the use of this interface to produce a type 𝐴(𝛼) is checked to be in the logical relation.

Starting with the first perspective, we imagine observing a program from outside the existential

schema, without 𝛽 in scope. This corresponds to working with an instance of the closed logical

relation at some Δ which does not include 𝛽 . We call this ‘unobserved’ because 𝛽 will never

arise in any form while reasoning with the logical relation; it can never be used to trigger non-

interference. That any declassification is happening is entirely invisible from this perspective. We

can demonstrate this by sketching using the logical relation to show equality for some arbitrary

program at the type in Figure 17, and observing the goal it reduces to.

(1) We want to show . . . ∈ ∀(𝛼.∀(𝛽.𝐹 (𝛽) → 𝐴(𝛼)) → 𝐴(𝛼)) | . . . [Δ].
(2) Assume Δ ⊢ 𝜙 and substitute it for 𝛼 to get . . . ∈ ∀(𝛽.𝐹 (𝛽) → 𝐴(𝜙)) → 𝐴(𝜙) | . . . [Δ].
(3) Assume . . . ∈ ∀(𝛽.𝐹 (𝛽) → 𝐴(𝜙)) | . . . [Δ].
(4) Suffices to show . . . ∈ 𝐴(𝜙) | . . . [Δ].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:24 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

Observe that we never introduce 𝛽 in this process, and𝐴(𝜙) does not contain 𝛽 . The critical step is
in item 2, where we instantiate 𝛼—and therefore the output type𝐴(𝛼) of the program—with a Δ ⊢ 𝜙
where 𝛽 ∉ Δ. So reasoning about the behavior of some programwhich declassifies, if our perspective

is from outside the existential, does not permit us to observe the effect of any declassifications. Put

another way, declassification in our setting is modular. Client code downstream of some program

using declassification, but which does not expose the associated existential dependency variables

in its types, must reason about the program without regard to any declassifying behavior. But what

if existential variables do appear in types?

We move now to the second perspective, which regards the inside of the existential—specifically

the higher-order function where 𝛽 is in scope. Accordingly, 𝛽 can now occur within the logical

relation, with the latter being indexed at Δ, 𝛽 . This presents a problem. To illustrate, imagine our

observer level does not include 𝛽 and that there is a function at type [string · 𝛽] → string in 𝐹 (𝛽),
akin to hash from Figure 12. We want to use the logical relation to see what happens when it is

applied. We can use non-interference to obtain related expressions at [string · 𝛽] and pass them

to the function. Then the application forms are equated at string, but not by non-interference.

Note the equated outputs of the function depend on its non-equated inputs! This disconnect can be

explained by walking through the inner part of the existential via the logical relation.

(1) We want to show . . . ∈ 𝐹 (𝛽) → 𝐴(𝜙) | . . . [Δ, 𝛽].
(2) Assume . . . ∈ 𝐹 (𝛽) | . . . [Δ, 𝛽].
(3) Suffices to show . . . ∈ 𝐴(𝜙) | . . . [Δ, 𝛽].
The critical step is item 2, where we assume our declassifying functions to be in the logical

relation, and therefore to preserve equalities. We then must show in item 3 that the computation

that uses them itself establishes an equality. Importantly, the act of assuming declassifiers preserve

equalities, or ignoring any disequalities induced—due to observable results depending on non-

observable inputs—privileges them. The logical relation will only permit these assumed declassifiers

to perform declassification in item 3. Membership in the logical relation will not be able to be

shown for expressions which attempt a non-permitted (non-assumed) declassification because a

disequality will result. So it is checked that any declassification which occurs is as a consequence

of operations from 𝐹 (𝛽).

6 Related and Future Work
6.1 Declassification via Type Abstraction
The first paper to recognize the relationship between declassification and type abstraction was

Nanevski et al. [2013], working in a verification logic embedded in a dependent type theory. Unlike

in our setting, their language works directly in terms of abstract types exporting equality predicates

for non-interference reasoning. Due to being coalesced with functional correctness reasoning, their

specifications are quite complex. We target a type system intended to be used outside a verification

setting, in general-purpose languages. Frumin et al. [2021] also use a relational logic, integrated

with a simpler type system, to reason about declassification. Due to the expressivess of the logic,

their ability to verify the safety of declassification according to e.g. the concrete values taken on

by a variable surpasses ours. We suspect extending our system to account for type-level value

dependency may permit a similar degree of expressivity.

Ngo et al. [2020] recovers noninterference with declassification via existential quantification

over types. Such quantification, however, comes with the issues noted in Section 1.1: interesting

computation cannot be done on abstract types, so their approach does not permit computing with

secrets until they have been declassified. A follow-up paper [Cruz and Tanter 2019] approaches

from a similar angle, again existentially quantiying over types. They adapt faceted types from

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

Structural Information Flow: A Fresh Look at Types for Non-interference 414:25

the information flow setting to make computations on secrets possible. The approach presented

there is attractive, but combining quantification over dependencies and free semilattices seems to

accomplish the same goals more directly and with better-understood logical foundations.

6.2 Foundations for Information Flow
Miyamoto and Igarashi [2004] discuss modal logic as the logical basis for information flow, working

in a partial modal logic setting. While they do not strictly make the connection to partial modal

logic or hybrid logic, it is observed that their information flow tracking connective may decompose

as @ℓ□𝐴. They do not make the further step to lax logic to notice that the necessity semantics is

vestigial. Many of the hybrid intuitions we relied on here emerged later from Reed [2009].

Other work [Askarov et al. 2008; Halpern and O’Neill 2008] grounds information flow in epistemic

logic, a flavor of modal logic which contends naturally with principals in information flow systems

such as Jif [Myers 1999]. Like Jif’s model, our approach is decentralized [Myers and Liskov 2000] in

that it is not based on a single trusted principal or a fixed lattice structure. Our approach differs in

that our types make no statements about policy or the allowed readers and writers of data governed

by such policy; this allows us to focus exclusively on information flow itself, simplifying our system.

Future work could explore whether the mechanisms in Jif could be built on this foundation, and

whether the intuitions from our setting might transfer to a principal-based approach.

Sterling and Harper [2022] establish a sheaf model for non-interference, using the topos-theoretic

sealing and transparency modalities to selectively obscure information. We suspect that our satis-

faction connective [𝐴 · 𝜙] is related to the transparency modality, exhibiting similar behavior and

being of the same polarity. We are actively investigating the categorical semantics of our language

and expect to shine further light on any connections here.

Finally, a fragment of the structural approach to information flow appears to be related to

Algebraic Subtyping [Dolan 2017; Parreaux 2020]. In particular, one might imagine encapsulating

every type T in a wrapper type IFC[T, I] playing a similar role to the satisfaction connective.

Information flow dependencies can then be expressed as unions of types representing dependencies,

for instance IFC[int, PWD | 'a | 'b]. We leave a full development of this idea to future work;

this may serve as a lightweight way to port our style of information flow reasoning to existing

languages. It is unclear to what extent current Algebraic Subtyping systems provide support for

higher-ranked quantification, though there is ongoing work [Parreaux et al. 2024] to do so.

7 Conclusion
We have provided here the Structural Calculus of Indistinguishability. We have described a logically

motivated approach to information flow which simultaneously unlocks interesting opportunities to

simplify information flow specifications and offers a modular, sound approach to declassification.

We have shown that the latter captures useful programming patterns from the literature and that

the treatment of non-interference for it can reuse, unchanged, the machinery for hybrid-style

quantification over worlds.

8 Data Availability Statement
Referenced appendices, auxiliary definitions, and full proofs are available at Gouni et al. [2025].

Acknowledgements
We thank the anonymous reviewers for their helpful feedback; any remaining oversights or errors

are ours. We would also like to thank Corinthia Aberlé, Harrison Grodin, Lionel Parreaux, and

Tesla Zhang for insightful discussions. This research was supported by the Department of Defense

and the National Science Foundation under Grant Nos. H98230-23-C-0275 and CCF-1901033.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

414:26 Hemant Gouni, Frank Pfenning, and Jonathan Aldrich

References
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. “A core calculus of dependency.” In: Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for

Computing Machinery, San Antonio, Texas, USA, 147–160. isbn: 1581130953. doi:10.1145/292540.292555.

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. 2008. “Termination-insensitive noninterference leaks

more than just a bit.” In: Computer Security-ESORICS 2008: 13th European Symposium on Research in Computer Security,
Málaga, Spain, October 6-8, 2008. Proceedings 13. Springer, 333–348. doi:10.1007/978-3-540-88313-5_22.

Peter Nicholas Benton, Gavin M. Bierman, and Valeria Correa Vaz de Paiva. 1998. “Computational types from a logical

perspective.” Journal of Functional Programming, 8, 2, 177–193. doi:10.1017/S0956796898002998.
Pritam Choudhury, Harley Eades III, and Stephanie Weirich. 2022. “A Dependent Dependency Calculus.” In: European

Symposium on Programming. Springer International Publishing Cham, 403–430. doi:10.1007/978-3-030-99336-8_15.

Raimil Cruz and Éric Tanter. 2019. “Existential Types for Relaxed Noninterference.” en. In: Programming Languages and
Systems. Ed. by Anthony Widjaja Lin. Springer International Publishing, Cham, 73–92. isbn: 9783030341756. doi:10.1007

/978-3-030-34175-6_5.

Dorothy E Denning. 1976. “A lattice model of secure information flow.” Communications of the ACM, 19, 5, 236–243.

doi:10.1145/360051.360056.

Stephen Dolan. 2017. Algebraic subtyping. BCS, The Chartered Institute for IT. isbn: 9781780174150.

Matt Fairtlough and Michael Mendler. 1997. “Propositional lax logic.” Information and Computation, 137, 1, 1–33. doi:10.1006
/inco.1997.2627.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. “Compositional Non-Interference for Fine-Grained Concurrent

Programs.” In: 2021 IEEE Symposium on Security and Privacy (SP), 1416–1433. doi:10.1109/SP40001.2021.00003.
Jean-Yves Girard. 1986. “The system F of variable types, fifteen years later.” Theoretical computer science, 45, 159–192.

doi:10.1016/0304-3975(86)90044-7.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7. Cambridge university press Cambridge. isbn:

9780521371810.

Joseph A Goguen and José Meseguer. 1982. “Security policies and security models.” In: 1982 IEEE Symposium on Security and
Privacy. IEEE, 11–11. doi:10.1109/SP.1982.10014.

Hemant Gouni, Frank Pfenning, and Jonathan Aldrich. 2025. Appendices, Definitions, and Proofs for Article ‘Structural
Information Flow: A Fresh Look at Types for Non-interference’. Zenodo. (2025). doi:10.5281/zenodo.17013074.

Joseph Y Halpern and Kevin R O’Neill. 2008. “Secrecy in multiagent systems.” ACM Transactions on Information and System
Security (TISSEC), 12, 1, 1–47. doi:10.1145/1410234.1410239.

Shin-ya Katsumata. 2014. “Parametric effect monads and semantics of effect systems.” In: Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’14). Association for Computing Machinery,

San Diego, California, USA, 633–645. isbn: 9781450325448. doi:10.1145/2535838.2535846.

Elisavet Kozyri, Stephen Chong, Andrew C Myers, et al.. 2022. “Expressing information flow properties.” Foundations and
Trends® in Privacy and Security, 3, 1, 1–102. doi:10.1561/3300000008.

Paul Blain Levy. 1999. “Call-by-push-value: A subsuming paradigm.” In: International Conference on Typed Lambda Calculi
and Applications. Springer, 228–243. doi:10.1007/3-540-48959-2_17.

Yiyun Liu, Jonathan Chan, Jessica Shi, and Stephanie Weirich. 2024. “Internalizing Indistinguishability with Dependent

Types.” Proceedings of the ACM on Programming Languages, 8, POPL, 1298–1325. doi:10.1145/3632886.
John McLean. 1996. “A general theory of composition for a class of" possibilistic" properties.” IEEE Transactions on Software

Engineering, 22, 1, 53–67. doi:10.1109/32.481534.
John C. Mitchell and Gordon D. Plotkin. 1985. “Abstract types have existential types.” In: Proceedings of the 12th ACM

SIGACT-SIGPLAN symposium on Principles of Programming Languages - POPL ’85. Association for Computing Machinery,

37–51. doi:10.1145/318593.318606.

Kenji Miyamoto and Atsushi Igarashi. 2004. “A modal foundation for secure information flow.” In: Workshop on Foundations
of Computer Security, 187–203.

E. Moggi. 1989. “Computational lambda-calculus and monads.” In: [1989] Proceedings. Fourth Annual Symposium on Logic in
Computer Science, 14–23. doi:10.1109/LICS.1989.39155.

Andrew C Myers. 1999. “Mostly-static decentralized information flow control.” Ph.D. Dissertation. Massachusetts Institute

of Technology. doi:1721.1/16717.

Andrew C Myers and Barbara Liskov. 2000. “Protecting privacy using the decentralized label model.” ACM Transactions on
Software Engineering and Methodology (TOSEM), 9, 4, 410–442. doi:10.1145/363516.363526.

Aleksandar Nanevski. 2004. Functional programming with names and necessity. Carnegie Mellon University.

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. “Dependent type theory for verification of information

flow and access control policies.” ACM Transactions on Programming Languages and Systems (TOPLAS), 35, 2, 1–41.
doi:10.1145/2491522.2491523.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1017/S0956796898002998
https://doi.org/10.1007/978-3-030-99336-8_15
https://doi.org/10.1007/978-3-030-34175-6_5
https://doi.org/10.1007/978-3-030-34175-6_5
https://doi.org/10.1145/360051.360056
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.5281/zenodo.17013074
https://doi.org/10.1145/1410234.1410239
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1561/3300000008
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1145/3632886
https://doi.org/10.1109/32.481534
https://doi.org/10.1145/318593.318606
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/1721.1/16717
https://doi.org/10.1145/363516.363526
https://doi.org/10.1145/2491522.2491523

Structural Information Flow: A Fresh Look at Types for Non-interference 414:27

Minh Ngo, David A Naumann, and Tamara Rezk. 2020. “Type-Based Declassification for Free.” In: Formal Methods and
Software Engineering: 22nd International Conference on Formal Engineering Methods, ICFEM 2020, Singapore, Singapore,
March 1–3, 2021, Proceedings 22. Springer, 181–197. doi:10.1007/978-3-030-63406-3_11.

Lionel Parreaux. Aug. 2020. “The simple essence of algebraic subtyping: principal type inference with subtyping made easy

(functional pearl).” Proc. ACM Program. Lang., 4, ICFP, Article 124, (Aug. 2020), 28 pages. doi:10.1145/3409006.
Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and Chun Yin Chau. 2024. “When Subtyping Constraints

Liberate: A Novel Type Inference Approach for First-Class Polymorphism.” Proceedings of the ACM on Programming
Languages, 8, POPL, 1418–1450.

Frank Pfenning and Rowan Davies. 2001. “A judgmental reconstruction of modal logic.” Mathematical structures in computer
science, 11, 4, 511–540. doi:10.1017/S0960129501003322.

François Pottier and Vincent Simonet. 2002. “Information flow inference for ML.” In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’02). Association for Computing Machinery, Portland,

Oregon, 319–330. isbn: 1581134509. doi:10.1145/503272.503302.

A. N. Prior. 1968. “"Now".” Noûs, 2, 2, 101–119. doi:10.2307/2214699.
Vineet Rajani and Deepak Garg. 2018. “Types for Information Flow Control: Labeling Granularity and Semantic Models.” In:

2018 IEEE 31st Computer Security Foundations Symposium (CSF), 233–246. doi:10.1109/CSF.2018.00024.
Jason Reed. 2009. A hybrid logical framework. Carnegie Mellon University.

John C. Reynolds. 1984. “Types, Abstraction, and Parametric Polymorphism.” In: Information Processing 83: Proceedings of the
IFIP 9th World Computer Congress, Paris, France, September 19-23, 1983. Ed. by R. E. A Mason. Elsevier Science Publishers

B. V. (North-Holland), Amsterdam, 513–523.

Andrei Sabelfeld and David Sands. 2009. “Declassification: Dimensions and principles.” Journal of Computer Security, 17, 5,
517–548. doi:10.3233/JCS-2009-0352.

Naokata Shikuma and Atsushi Igarashi. 2008. “Proving noninterference by a fully complete translation to the simply typed

lambda-calculus.” Logical Methods in Computer Science, 4. doi:10.1007/978-3-540-77505-8_24.
Jonathan Sterling and Robert Harper. 2022. “Sheaf Semantics of Termination-Insensitive Noninterference.” In: 7th Interna-

tional Conference on Formal Structures for Computation and Deduction (FSCD 2022) (Leibniz International Proceedings
in Informatics (LIPIcs)). Ed. by Amy P. Felty. Vol. 228. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 5:1–5:19. isbn: 978-3-95977-233-4. doi:10.4230/LIPIcs.FSCD.2022.5.

Christopher Strachey. 2000. “Fundamental concepts in programming languages.” Higher-order and symbolic computation, 13,
11–49. doi:10.1023/A:1010000313106.

Stephen Tse and Steve Zdancewic. 2004. “Translating dependency into parametricity.” In: Proceedings of the Ninth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’04). Association for Computing Machinery, Snow

Bird, UT, USA, 115–125. isbn: 1581139055. doi:10.1145/1016850.1016868.

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 414. Publication date: October 2025.

https://doi.org/10.1007/978-3-030-63406-3_11
https://doi.org/10.1145/3409006
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1145/503272.503302
https://doi.org/10.2307/2214699
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1007/978-3-540-77505-8_24
https://doi.org/10.4230/LIPIcs.FSCD.2022.5
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1145/1016850.1016868

	Abstract
	1 Introduction
	1.1 An Opinionated Crash Course in Information Flow
	1.2 A Preview of the Rest

	2 Background, Logic, and Typing
	2.1 Introduction: Round Two
	2.2 Reconstructing Information Flow via Hybrid Logic

	3 More Examples and Subtleties
	3.1 Uniformity, or Absence of Policies
	3.2 The Benefits of Explicit Satisfaction

	4 Declassification
	4.1 Explicit, Higher-Rank Quantification and Dependency Sets
	4.2 `Where' Declassification: Disappearing Dependencies with Quantification
	4.3 `What' Declassification: Revisiting Password Checking
	4.4 `Who' Declassification: Alice talks to Bob

	5 Metatheory
	5.1 Syntax and Typing: A Hybrid Type System
	5.2 Non-interference
	5.3 Metatheoretic Mechanics of Declassification

	6 Related and Future Work
	6.1 Declassification via Type Abstraction
	6.2 Foundations for Information Flow

	7 Conclusion
	8 Data Availability Statement

